HelmholtzZentrum münchen

Deutsches Forschungszentrum für Gesundheit und Umwelt

Evolution of Computational ICRP/ICRU phantoms

M. Zankl XLII Radiation Protection Days, 08.-11.11.2021

Dose quantities for radiological protection – requirement of computational phantoms

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt

Various types of anthropomorphic phantoms – mathematical phantoms

Oak Ridge phantom family (Cristy, 1980) Further developed by Cristy and Eckerman (1987)

ORNL-DWG 79-19955

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

Various types of anthropomorphic phantoms – mathematical phantoms

- Organ masses and volumes according to data on Reference Man (ICRP Publication 23, 1975)
- Organ shapes described by geometrical bodies (spheres, ellipsoids, cylinders, cones ...)

Various types of anthropomorphic phantoms – mathematical phantoms

• Advantages:

- They are simple.
- They are flexible.
- They represent a "standard" or "reference" patient.
- They can easily be used with (Monte Carlo) radiation transport programmes.
- Disadvantage:
 - They are unrealistic.

Adam

Golem

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGE

Various types of anthropomorphic phantoms – voxel phantoms

Construction of voxel models from 3D medical image data

- Whole body (or partial body) tomographic data of contiguous slices
- Numbered list of relevant organs (organ identification numbers, OID)
- Identification of relevant organs on the single slice images
- Replacement of the grey values (Hounsfield Units) by organ identification numbers (segmentation) using image processing software

Original CT slice Grey values: absorption properties

^{r-50} **Segmented** slice Colours: identification numbers assigned to individual organs

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

Various types of anthropomorphic phantoms – voxel phantoms

Segmented data

Data per slice arranged in columns and rows of picture elements (pixel)

Stack of slices → 3D array of volume elements (voxel)

HelmholtzZentrum münchen

Deutsches Forschungszentrum für Gesundheit und Umwelt

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

XLII Radiation Protection Days, 08-11 November 2021

Voxel models have a more realistic anatomy

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt

XLII Radiation Protection Days, 08-11 November 2021

Various types of anthropomorphic phantoms – voxel phantoms

Advantages:

- They are realistic.
- They can easily be used with (Monte Carlo) radiation transport programmes.

Disadvantages:

- They require a large amount of data storage.
- They are inflexible.
- They represent an individual patient (highly specific).

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt

LMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGER

Various types of anthropomorphic phantoms – ICRP reference computational phantoms

For legislation, "standard" (or "reference") persons are needed

ICRP has specified their main characteristics:

Table 2.9. Reference values for height, mass, and surface area of the total body

Age	Height (cm)		Ma		
	Male	Female	Male	Female	
Newborn	51	51	3.5	3.5	
1 year	76	76	10	10	
5 years	109	109	19	19	
10 years	138	138	32	32	
15 years	167	161	56	53	
Adult	176	163	73	60	

Reference masses for 56 organs, organ groups, and tissues

Reference phantoms – methods of construction

Selection of segmented voxel models of a male and a female, whose body height and mass resembled the reference values of ICRP 89 "Golem":176 cm, 69 kg (176 cm, 73 kg) "Laura": 167 cm, 59 kg (163 cm, 60 kg)

Modification of these segmented voxel models

Voxel scaling

- Use body height to scale voxel heightUse skeleton volume to scale voxel in-plane resolution

Adjustment of individual organ volumes

Adjustment of whole-body mass by adjusting amount of adipose tissue

aura

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt

XLII Radiation Protection Days, 08-11 November 2021

Evolution of Computational ICRP/ICRU Phantoms

11

Various types of anthropomorphic phantoms – ICRP reference computational phantoms (ICRP Publ. 110)

Advantages:

- They are (relatively) realistic.
- They can easily be combined with (Monte-Carlo-) radiation transport programs.
- They represent a "standard " oder "reference" person.

Disadvantages:

- They are unflexible.
- They have additional limitations due to the voxel geometry and dimensions.

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt SPITZENFORSCHUNG FÜ

XLII Radiation Protection Days, 08-11 November 2021

Evolution of Computational ICRP/ICRU Phantoms

12|

Voxel-type reference computational phantoms (ICRP Publication 110)

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt

XLII Radiation Protection Days, 08-11 November 2021

Construction of Mesh-type Reference Computational Phantoms (MRCP) by ICRP Task Group 103

Simple Organs: Direct Conversion

HelmholtzZentrum münchen

Deutsches Forschungszentrum für Gesundheit und Umwelt

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

Construction of Mesh-type Reference Computational Phantoms (MRCP) by ICRP Task Group 103

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

XLII Radiation Protection Days, 08-11 November 2021

Construction of Mesh-type Reference Computational Phantoms (MRCP) by ICRP Task Group 103

Lung airways: Modelling

Male

Voxel

Mesh

HelmholtzZentrum münchen

Deutsches Forschungszentrum für Gesundheit und Umwelt

XLII Radiation Protection Days, 08-11 November 2021

ICRP Adult Reference Computational Phantoms – voxel versus mesh type

ICRP Reference Computational Phantoms (voxel-type) (ICRP Publication 110, 2009)

ICRP Reference Computational Phantoms (mesh-type) (ICRP Publication 145, 2020)

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

XLII Radiation Protection Days, 08-11 November 2021

ICRP Adult Reference Computational Phantoms – voxel versus mesh type

- Polygon-mesh (PM) versions of the ICRP 110 phantoms have been published as ICRP Publication 145
- The final versions of the PM phantoms include
 - continuous and fully-enclosed hollow organs
 - thin target layers (10-300 μm) for the respiratory and alimentary tract organs
 - detailed models for skeletal systems, eye lens, lymphatic nodes, blood vessels, etc.
- The PM phantoms provide
 - similar dose values with the ICRP 110 phantoms for highly penetrating radiations
 - "correct" dose values for weakly penetrating radiations
- The PM phantoms are deformable, providing different postures (walking, sitting) to enable dose calculations for emergency exposure scenarios
- The PM phantoms can be made to move as necessary
- The PM phantoms can be combined with some Monte Carlo codes (Geant4, MCNP6, PHITS)

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt

Various types of anthropomorphic phantoms – ICRP mesh-type reference computational phantoms (ICRP Publ. 145)

Advantages:

- They represent a "standard " oder "reference" person.
- They are very realistic.
- They have continuous and smooth surfaces and contain finest structures.
- They contain all relevant tissues and make surrogate phantoms unnecessary.
- They are flexible.

Disadvantage:

• Only few (Monte-Carlo-) radiation transport programs are able to directly deal with them.

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt

ICRP Reference phantoms – new developments

Paediatric ICRP Reference Voxel Phantoms (ICRP Publication 143, 2020)

HelmholtzZentrum münchen

Deutsches Forschungszentrum für Gesundheit und Umwelt

XLII Radiation Protection Days, 08-11 November 2021

Evolution of Computational ICRP/ICRU Phantoms

201

Resolution and array dimensions of paediatric reference voxel phantoms

Phantom	Resolution (cm)			Array size			Matrix size
	Х	Υ	Z	Х	Y	Z	(million)
00MF	0.0663	0.0663	0.0663	345	211	716	52.1
01MF	0.0663	0.0663	0.1400	393	248	546	53.2
05MF	0.0850	0.0850	0.1928	419	230	572	55.1
10MF	0.0990	0.0990	0.2425	419	226	576	54.5
15F	0.1200	0.1200	0.2828	401	236	571	54.0
15M	0.1250	0.1250	0.2832	407	225	586	53.7
AF	0.1775	0.1775	0.4840	299	137	348	14.3
AM	0.2137	0.2137	0.8000	254	127	222	7.2

HelmholtzZentrum münchen

Deutsches Forschungszentrum für Gesundheit und Umwelt

XLII Radiation Protection Days, 08-11 November 2021

ICRP Reference phantoms – new developments

HelmholtzZentrum münchen

Deutsches Forschungszentrum für Gesundheit und Umwelt

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

XLII Radiation Protection Days, 08-11 November 2021

ICRP Reference phantoms – new developments: pregnant phantoms

Models at 8 weeks to 38 weeks post-conception developed at University of Florida

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

XLII Radiation Protection Days, 08-11 November 2021

Summary

- The ICRP 110 adult male and female voxel phantoms are presently the official computational models representing the ICRP Reference Male and Reference Female.
- They have limitations concerning the representation of small objects due to the voxel resolution of the underlying image data.
- These limitations have been addressed by the phantom conversion project.
- The resulting mesh-type phantoms have been published as ICRP Publication 145.
- They are deformable, providing also the potential for assuming different postures.
- The ICRP paediatric reference computational phantoms have been published in a voxelised version as ICRP Publication 143.
- Polygon mesh versions of the paediatric reference computational phantoms will be published later this year.
- Pregnant phantoms at 8 to 38 weeks post-conception complete the family of phantoms available for radiological protection computations.

HelmholtzZentrum münchen Deutsches Forschungszentrum für Gesundheit und Umwelt

