

Ex vivo experimental model in biodosimetry

Lenka ANDREJSOVÁ (lenka.andrejsova@unob.cz), Jana ČÍŽKOVÁ, Alžběta FILIPOVÁ and Zuzana ŠINKOROVÁ
Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, CR

Wistar Rat Rattus sp. strain Wistar

	Antibody against	Clone	Fluoro- chrome	Specificity to
т	CD45RA	1F4	PE	B-lymphocytes
	CD8	OX-8	V450	MHC-I restricted T-cells (suppressor/cytotoxic T cells), NK cells, activated CD4 ⁺ T helpers
	CD3	1F4	APC	T-lymphocytes
	CD161	NKR-P1A	V500	NK cells, small T-lymphocyte subset
	Annexin V		FITC	Apoptotic and dead cells
	Propidium iodide			Dead cells

Six Wistar rats per group were $in\ vivo$ whole-body exposed to homogeneous ionizing irradiation (IRR) of 0 - 7 Gy (dose rate 0.48 Gy/min) from a distance of 1 m. Peripheral blood (5 – 7 ml) of each animal was collected 1 hour or 4 hours after exposition. Non-irradiated animals were served as controls. Peripheral blood mononuclear cells (PBMC) were isolated by centrifugation through a Ficoll Histopaque 1077 cushion according to the manufacturer instructions and washed in Iscove's Modified Dulbecco's Medium.

Finally, the suspension density of 1×10^6 PBMC in 1ml of IMDM was prepared and cultivated in cultivation plates 1hr, 3 hrs, 5 hrs, 7 hrs, and 23 hrs, respectively, under specific *ex vivo* conditions (37°C, 5% CO₂). The representations of viable (non-apoptotic) lymphocytes were detected by immunophenotyping and analyzed at Cyan ADP (DakoCytomation) analyzer.

BIODOSIMETRY is a subdiscipline of radiobiology.

Its aim is a quantification of the absorbed dose of ionizing radiation according detection of postradiation changes in the irradiated organism.

- **A.** Apopototic cells are not detectable immediately after sampling (0 hr *ex vivo* cultivation). Apoptotic cells are eliminated from peripheral blood by active scavenging system.
- **B.** The unique decline of B-lymphocytes 5 hrs after irradiation instead of remaining high viability of T-lymphocytes and NK cells is a specific evidence (phenomenon) of the irradiation effect.
- C. T-lymphocyte and B-lymphocyte decreases are dose-dependent 7 hours after ex vivo cultivation. The assessment of their representation allows to distinguish between low (< 1Gy), high (> 5 Gy) and medium value of absorbed dose of irradiation.
- **D. NK cells are the most relative radioresistant** peripheral white blood cells. Their decline is dose dependent 23 hours after *ex vivo* cultivation.
- E. T-lymphocytes collected 1 hour after in vivo irradiation decrease within a linear manner 23 hours after ex vivo cultivation. Their assessment allows the back estimate of low doses of irradiation (0 1 Gy).

RESULS I

Acute irradiation by 0.5 - 1 - 2 - 5 and 7 Gy

1 hr after in vivo irradiation

0 hr ex vivo cultivation

RESULS II Low dose irradiation by $0.4-0.6-0.8\,$ and 1 Gy

