

On uncertainties in the manganese sulphate bath techniques

Jakub Lüley, Branislav Vrban, Štefan Čerba, Vladimír Nečas

Slovak University of Technology in Bratislava

- ✓ The manganese sulphate bath is the most widespread system for a neutron source emission rate characterization.
- ✓ Experimental spherical plexiglas bath vessel was developed with inner diameter of 80 cm.
- ✓ Several types of measurements can be performed to estimate the neutron emission rate.
 - ✓ Continual measurement through external circuit driven by circulation pump.
 - Circuit is equipped by the 76×76 mm cylindrical NaI(TI) gamma detector placed in the Marinelli beaker.
 - Approximate flow rate is 3.5 ℓ.min⁻¹.
 - Homogenization of the solution is provided by the stirrer with speed control; 0-200 rpm.
 - ✓ Manual extraction of the solution sample from the vessel.
 - · Two extraction points; front side and back side of Marinelli beaker
 - Availability of static activation of the solution; no flow, no mixing.
 - Free of use measurement system; in our case it is a high purity germanium detector (HPGe) placed in low background chamber
 - ✓ In-vessel measurement.
 - The plexiglas bath is equipped by the dry channel.
 - Remote manipulation of a neutron source.

- ✓ Several source of uncertainties exist, which must be determined to completely characterized neutron source emission rate by developed device.
 - ✓ Activity of the solution. → 1.3 1.6 %
 - ✓ Concetration of the managanese sulphate in solution. → 4 % bias, ± 2 %
 - \checkmark Volume of the spherical bath vessel, marinelly beaker, samples. \rightarrow negligible
 - ✓ Correction factors "user effect".
 - Isotopic composition.
 - MC metod. → low, but higher than statistical unc.
 - Neutron source spectra. → up to 5 %
 - Details' depth of the model. → negligible
 - XS uncertainties. → Future research!!!

This study has been financially supported by the Slovak Research Development Agency No. APVV-16-0288 and APVV-20-300. The special thanks goes to the team from Department of ionizing radiation of Slovak Institute of Metrology.

8.-12.11.2021 Dny radiačný ochrany 2021